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Inv-\this papc‘r;: we Jconsider:,thc linear quadratic optimal control
problem on infinite time interval for linear time-invariant systems defined on
Hilbert spaces. The optimal control is given by a feedback form in terms of
solution "n to. the associated algebraic Riccati equation (ARE). A Ritz type
approximation 1is used to obtain a sequence n?ﬁ of finite dimensional
approximations of the solution to ARE. A sufficient condition that shows m¥
converges strongly to L‘n is obtained. Under this condition, we derive a
formula which can be used to obtain a rate of convergence of n® to 'n.
We demonstrate and apply the results for the Galerkin approximation for

parabolic systems and the averaging approximation for hereditary differential

systems.
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1. ntr i

Assume Z, U and Y are Hilbert spaces. Consider the evolution

ecquation on Z

(L) 2(t) = 4 2() + Bu(t), z2(0) =z, €2
where u(t) is - 7 -alued control function, 4 is the infinitesimal generator of
strongly continur emigroup S(t) on Z, and B € £(U,Z). The Y-valued

observation function y is given by

(1.2) y(t) = C z(t) , t 30.

We assume that C € £(Z,Y). We interpret the equation (1.1) in the mild sense;

the solution of (l.1) is given by
t
(1.3) z(t) = S(t)z, + J S(t-s)B u(s)ds .
0
Consider the minimization problem; minimize the cost functional
fe 2 2
(1.4) J(u,z;) = J (||y(l)|| + |u®)]| ydt
o
subject to (1.3). Then the following result is well-known [10],[11]:

heorem 1.1 Assume (A4.B) is stabilizable and (4.C) 1is detectable. Then
there exists a unique nonnegative self-adjoint solution M to the algebraic
Riccati equation in Z:

(L.5) (A*N + N4 - NBB*N + C*C)z = 0 for all z ¢ dom(4)

and the optimal solution u® to (1.4) is given by

ul(t) = -B*n T(t)z, |

where T(t) is the strongly continuous semigroup generated by A4 - BB*n

and it is uniformly exponentially stable,
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] Here we have

f'#

::\ Decfinition 1.2 () (A4.B) is stabilizable if there exists an operator
L |

" K € £&Z,U) such that A4-BK generates a uniformly exponentially stable
.“:‘.

e semigroup on Z.

. . . .

g (2) (4.C) is detectable if there exists an operator G € ¥(Y,Z) such that 4 - GC
thals

;. generates a uniformly exponentially stable semigroup.

his

:C::- The purpose here is to construct a finite dimensional approximation
".!":

ot of the optimal feedback gain operator B*IL Let us consider a sequence of
’-: approximating problems (ZN,AN.BN.CN); let ZN be a sequence of finite
A . . .

N dimensional subspaces of Z and PN be the orthogonal projection of Z onto
o

A

" ZN. Assume 4N : zZN -zZN | BN U - 2N and ¢V : zN - Y are continuous.
Yt Then consider the Nth approximating problem of (1.4)

-.'::-f

"-.:. .

o (1.6) minimize JN(u,z) = J (IENNO P+ fu Pt

}l'; 0
¢

Y subject to

2

:,\.:. t

2 (1.7) 2N(t) = SN(YPNz, + J SN(t-5)BNu(s)ds

0

w;

N . . .

3 where SN(t) = ¢4 %, t 3 0. Then the optimal control uN of (16) is given
T
& by
o8
-, . N pNpN%N
) UN(t) = -gN nNC(A -B"B n )tPNzo , t30
i
oS where n¥ : zN - zZN s self-adjoint and satisfies the Nth approximating
e, o
- . . . . . N
algebraic Riccati equation in 2%,
-~ * L ] *

- (1.8) AN'ON 4 nNAN - nNgNBNTIN 4+ NN < 0 .
“
A
"J“

"t * . . . . . . .
:.1-: Here, BN nN N » | yields a sequence of finite dimensional approximations of
Kals
5
e
1T
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I

A
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By the optimal feedback gain [3].

A ' In this paper we first obtain a condition on (ZN.AN,BN,CN) for which
(1.8) admits a unique nonnegative solution n®, and PN converges strongly to N

J in §2. Such a condition has been discussed in [2], [3] but the condition in this

S paper improves those in [2], [3], i.e, we introduce the uniform detectability

‘—)_ condition (see, (H3) in 82, for the definition) which is additional to those

considered in [2], and using this condition, we are able to show that there

\:. exists an integer N, such that for N 3 N,

N_pNpN* N

- for positive constants M 3 | and w (independent of N 3 N). This assertion
is a part of assumptions in [2, Theorem 2.2]. The uniform detectability
- condition is satisfied if C*C is coercive, which is assumed in the discussions in
[2,p. 693]. Thus, the uniform detectability condition can be regarded as a
( relaxation of the coercivity assumption mentioned above. Next, under the
A ’4 condition in §2 we derive a formula which provides a rate of convergence of

nN to m and apply the formula for specific examples.
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A 2. Uniform Stability and Strong Convergence
t"'
L}
i.,' N
. We assume the following. Let SN@t) = e ', t 32 0
Y
-:-‘ (HY) For each 2z ¢ Z, we have
™ (i) SNWPNz « S(t)z , and
[}
a (i) SN(*PNz ~ s* 0z,
‘&t
.;:' where the convergences are uniform in t on bounded subsets of [0,%).
" (H2) (i) For each u ¢ U, BNu - Bu and for each z ¢ Z
" BN*PNz ~ Bz,
L d
b
) .
_\‘: (i) For each z ¢ Z, CNPNz = Cz and for each yeY
.
I CN'y - C*y.
e (H3) (1) The family of the pairs (UN,BN) is uniformly stabilizable: i.e.
:"_f; there exists a sequence of operators KN ¢ £2ZNU) such that
» sup“KN“ < = and
{
gy N_pNpgN
[eAT-BTEDRN ) ¢ Mttt s 0
for some positive constants M; 3 1 and w, .
N
(ii) The family of the pairs (4AN,CN) s uniformly detectable; i.e.
:: there exists a sequence of operators G ¢ 2(Y,ZN) such that
4
4
N
:.:’r sup”G ” < @ and
.‘4
N_~N-N —w,t
[eAT-CTCNPN € Mye P Lt 2 0
for some positive constants M, 3 1 and w,
: Remark (1) Suppose BN = PNB and CN = CPN. Then (H2) holds
; since it follows from (HI) that PNz =z forall z e Z.
N . -
:.- (2) The assumption (H3) 1is closely related to the preservation of 1
- .
B exponential stability under approximation in [3,Conjecture 7.1J and it is shown
b in [2] that (H3) (i) ((POES) in [2)) is satisfied for parabolic systems using the
0
~
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Galerkin approximation.
3) A natural way to argue (H3) is to take KN = KPN and GN = PNG for
some K € ¥Z,U) and G ¢ %Y,Z) such that 4 - BK and A4 - GC gencrate

uniformly exponentially stable semigroups on Z.

Theorem 2.1 Suppose (HI1)-(H3) are satisfied. Then for each N, (1.8)
admits a unique nonnegative solution nV, sup“nN” < = and there exist

positive constants Mg 3 1 and wg (independent of N) such that

N N*-N Wt
"e(A ‘BNB n )tPN" € Msc ws s t 30.

Proof: The proof is based on the arguments in [il]. The existence and
uniqueness of solutions to (1.8) follow from Theorem 1l Since
<NPNz,2> = min JN(u,z), (H3) (i) implies that
<m¥PNz,z> € INGKNZN(.);2)
o N_pNpgN N_pNgN
. I (CNeA™BK Ny 3 N (AN-BNK ) tpNg g
0
£ B||z"2 for some positive constant B8
Since NN is self-adjoint, nonnegative definite, this implies that ||nN|| € B

By the variation of constants formula

N_pNpN*ON t N pNpN* N
(2.1) e(A7-BTBT )t _ TN(y) & I TN(t-s)(GNCN-BNBN*nN)e(4 =B B )5 4

4]
N ~N-~N
where TN(t) = ¢4 -GCIt ¢ 3 0. Here, from (1.8)
(AN-BNBN*NyerN | N N_gNpN®pNy | pNgNpN®N  oN*eN

N.
so that if zN(1) = e(4"-BNB nN)‘PNz, t 3 0, then

~ ’

AL A A I
I AT AT




g_t N2> + ||3N‘n"z"(t)“2 + |chR@* = 0
Thus, for all t 3 0
(2.2) <a¥zRn),z2N)> + J"( ”BN'nNzN(t)”’ + ICN2R() |Pdt
0
€ <m¥PNz,z2> ¢ 8”2”2
Now, from (2.1), we have for all t 3 0

t 2m? t .
I 2N |*ds € = uzu —* (e + nB”n’)I(nB" mzis) |
2 0

+ ||CNzN(s)“2)ds
where we have used the Young's inequality. From (2.2), we have
[ pNoppar € 22w, + 28 sup(iaE + B )
o] W
2

for all z ¢ Z. Therefore, the theorem follows from the Datko's theorem [7].

(Q.E.D)

The following is a consequence of [3, Theorem 6.9] and [2, Theorem
2.2].
Corollary 2.2 Suppose (A4.B) 1is stabilizable and (4.C) is detectable and
assume (HIl) ~ (H3) are satisfied. Then the unique nonnegative solution %
to (1.8) converges strongly to I, the unique solution to (1.5).
Theorem 2 Suppose that B is compact and BN = PNB  and that
(HD){i) and (H3)(i) are satisfied. Then (4.8) is stabilizable.
Proof: Let us consider the case C = I and CN = PN with Y = Z. Then it is
easy to show that (A4,C) is detectable and (AN,CN), N 3 1 are uniformly

detectable since (HI)i) implies that for some M 2 | and w independent of N,
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o

v ”SN(t)PN” ¢ Me", t 3 0. It then follows from Theorem 11 and (H3)(i) that for
LAt

-\- A

:-:.' each N, (1.8) with CN = PN has a unique solution nN, Using the same
(X<

N argument as in the proof of Theorem 2.1, we have ”ﬁN“ ¢ B for some positive
k)

J;": constant 8. Thus, by Theorem 6.5 in [3], there exists a subsequence of o™
Ao

-~ . . . - .

_f-g.j converges weakly to some nonnegative, self-adjoint operator IL We will show
S A o . . - A *-

i that 1 satisfies (1L.5) with C = L Since PNON = N NV
Y N.*.N
N B*PNON = B*mY. Since B* is compact, for each z ¢ Z, B 3 11 PNz converges
_::: strongly to B*fz. It now follows from [3, Theorem 6.7] that M satisfies (1.5)

But since (4.C) is detectable, by [10, Theorem 3.2], A4 - BB*N generates a

.

:::::J‘ uniformly exponentially stable semigroup on Z.

-
R (QED,)
N

o ' Remark 2.4 Roughly speaking, Theorem 2.3 means that the uniform
—:::: stabilizability implies the stabilizability of (4.B). The dual statement of
L Theorem 2.3 also holds: i.e., suppose C is compact, CN = CPN, then (HI)(ii)
( and (H3)ii) imply that (A4.C) is detectable. This statement can be proved by
"::::: applyving the exactly same arguments as in the proof of Theorem 2.3 to the
[

e dual Riccati equation

(AL + LTA* - EIC*CL + Dz =0

o for all z e dom(4*).
i~
D) .?I‘n

=
L
) ::"’

.-:_:'

s

o
r‘v‘.‘n

o

e

o
o
NS

LA

' » -, L. - - - - . - " - - - - - . . . - N . . . - .

2 e et g 0 > e et T T T “"""h"-‘,/f\\ ('f{'{(r('f"."""""‘.'

o ‘cl‘- o _9"., o -~....' ;. ‘t MY TR SR 'J" 0 i . RPN, IO e NN M ‘



CO“VQTEQDQQ Ea;g

In this section, we assume that (HIl) and (H3) are satisfied and let

BN = PNB and CN = CPN. Moreover, we assume

(H4)

For each z ¢ Z, Nz ¢ dom(4*) and B is compact.

From (1.5), we have for all z ¢ dom(4)

2<{Nz,42> - {B*Nz,B*Nz> + <Cz,Cz> = 0

Thus, (H4) and the density of dom(4) in Z imply that for all z € Z

2<A4*nz,z> - <B*nz,B*nz> + <Cz,Cz> = 0 .

Define the self-adjoint operator NN = PNMPN. Then for all x ¢ zV

3.1

where

(3.2)

2CAN INx x> - <B*fiNx, B*i¥x> + <CNx,CNx> + Nxx> = 0,

aN ¢ 2zZ¥) is a self-adjoint operator defined by

<BNx,x> = 24(A4* - AN.PN)nx,x)

B*mY - MHx,B*@N + x> for all x ¢ zZN

+

From (1.8), for x e zN

(3.3)

2aa¥ mNx x> - BN INx BN INX > + CNx,CNx> = 0 .

Hence by subtracting (3.1) from (3.3)

for all

(3.4)

204N - BNBN' N (M - Nyx>

+ BN - mNx, BN N - AN)x> - aFx x> = 0

x € ZN. Or equivalently

@
- N_gNpN*oN n -
.= ¢(A7-B7B” MOt (N | NygNpN* (N | iy ANy

]
J(AN-BNBN Ny o

x
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Similarly, subtracting (3.3) from (3.1), we obtain

- ¥ (AN.gNpN*AN . .
3.5 AN - . j (ATETET I N - fNBNBNT (N - AY) 4+ oY)
0

N_pNpN* AN
x C(A -B"BY 1 )tdl .
Here, from Theorem 2.1, we have

N_pNpN*aN W,
A -BTBT IO pNy ¢ M8 ¢ 5 0
with M,

B is compact
BN @™ - BN = N - mPNB| <0 as N - =,

Hence by the variation of constants formula and the Gronwall's lemma,

. N*(N_AN

It then follows that there exists an integer N, such that if N 3 N

W
N_gNEN*AN - —
e 4T ETET IO PN e Me T 15 0.

1’

Now, from (3.4) for all x ¢ ZN

n © A NpN*CN
(6 - @ - [ BN - AT BTBY N e g
0
.. J‘ AN-BNBN Ny, AN (AN-BNBN MY gy,
0
and from (3.9)

o PO
@7« LMo - J (BN - fiNye(4T-BNBY Mty 2,
0

® & A * A
- J‘ e AN-BNBN AN N (ANBNBNT NN oy
0

These inequalities imply that for x e ZVN

»1 and wy > 0. Since n"PN = n strongly by Corollary 2.2 and




* Al ¢ v A v v - \ R A At Ao Aot A0e A on ARe Shs hd 4 oie ates mhe- il
N ~eT—

W -10-

K N AN N 2
| <«(rT - Ahxx3] € =0

2
2M3
)

* AN so that

\...f 2
A M

N L ALl
Ys

where from (3.2)

P

r&L

(39) &N € 24® - ANPMIy + 28)B|||(B*-BNT)n|  for all N 3 N,
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s%n . 4, Examples
" In this section we discuss the examples in which (HI)~(H4) are
)
p satisfied and then apply the formula (3.8) and (3.9) to obtain a convergence
n,
) rate of NN to N
A
S
'\‘ » 41 Paraboli m
s Assume V and H are Hilbert spaces and V CH  with
:::: continuous dense injection 1. Consider a bilinear form o on V such that
) 4.1 lo(u,v), 4 c”u” ”v” for uv e V
¢
. vV v
,.
f_'
O (4.2) o(u,u) 3 wfju|? - pjul? for v eV
v H
L7~
[} 4
,&, where w > 0. It then follows from [9] that there exists an operator A ¢
r
¢ L(V,V*) such that
b
{ (4.3) o(u,v) = <Au,v> for uyv e V
- . k] b ‘ * ’
N vV
,.. where V CH = H* C V* and H being the pivoting space, and that A4
K
b on H with
ha
b7 (4.4) dom(4) = {x ¢ H: Ax ¢ H) dense in V,
A ",
‘f. generates the analytic semigroup on H and V* For given B ¢ £(U,H) and
. C ¢ Z(H,V) consider approximating problems (ZNANBNCN) ie. let ZN be a
’,
' sequence of finite dimensional subspace of V and AN: ZN & 7ZN s defined by
7.
% (4.5) -ANz x> = o(z,x) for z,x € ZN .
@
¥ Let PN be the orthogonal projection of H onto ZN and assume BY =
<
> PNB and CN = CPN. We assume the approximation condition:
W,
7
*'
'.l
N
‘-),
. 1
!
K

»
o

A

d L AT e m © A [y - . . . N LAy » - R . .~ L. .
Ol 1 1 gl Fe ™ o O ¥ e B N 2,
R A A o e e T R R e N Ao Lo K M
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R ,
i _: For each z € V there exists an clement 2zN ¢ ZN
_‘_'.{
}:. (4.6) such that ”z - zN“ € ¢(N) where €N) =0 as N - =,
QoL v
fT- It then follows from [2] that (HI) holds and if (4.B) is stabilizable and (A4.C) is
O]
v.
N . detectable, then (H3) holds. Thus from Corollary 2.2, nv converges strongly to
>
e N However one cannot apply the formula (3.8)-(3.9) as it is, since
\J
o NnzZ C dom(A4*) is the maximal regularity without assuming any regularity of C.
s
N "I
:;‘.- This can be demonstrated by the following example. Consider the case when
:'.JF
o~ H = L%0,1) and V = H}0,), and
‘c 1 d d .
-~ o(u,v) = — u(x) —v(x)dx for wu,v € Hj .
‘_,::‘ 0 dx dX
n(::'i
j-I";} Let us consider the Liapunov equation on H
o 4.7 AT + E4 + Q =
::::',j where Q is seif-adjoint operator on H. If for each z ¢ Z,
' ' 1 1
(Cz)(x) = I &(x,y)z(y)dy and (Qz)(x) =I a(x,y)z(y)dy,
" 0 0
';:f:j: then ¢ satisfies A¢ + q = 0 with Dirichlet boundary condition,
fn; ] 82 82
. where A¢p = — ¢ + — ¢ for ¢ ¢ H%[0,]] x [0,]]). In general (e.g. see
)\~ axz ayz
Y [61,(8))
:_w‘ 1 p1 r a2 2 a2 1,1
}. Jf LI__¢ + __¢> ]dxdy(MJJ'qlzdxdy.
o ‘0 ‘'ox3? dy? o ‘0
o~
:-}f. This implies LL? € dom(A4) is the maximal regularity.
EAF
:::.': Hence we will modify the arguments in Section 3 to improve the
vl‘._-'
<

formula (3.8)-(3.9) for this example. First we note that in (3.2) for x ¢ ZN

|<(A*-A"’PN)nx,x>| = jolx, (i - mx)|

BASSEA

< x| - ff‘)xnv by (4.1) .

"'q'”-." »

\ ] Tht

. ,
"“""' \"‘“‘"‘."'.' M '“,E""'""‘. """‘ "" AW QHI‘H O'H'M l"h n'lo'iohéﬂv " chH‘o
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Bs
: Thus from (3.2)
‘W
()
o <aNx x> -aN
," (4.8) Y = sup _|___"2_’f_|_ € 2 ¢ sup M
: Ix] #0Ix{l;, x#0 x|
N v v
. B*(n-nM
;‘ + 2aB||B|| sup ﬂ_‘_iﬂv ,
o x*0 11l
) v
" ’h £ .
. where x|l € a|x||,
-
;: Lemma 4.1 There exists a positive constant M such that
o ® N_pNpN* N
“cu -B7BT mHt PNx”2 dt ¢ M"x“2 , and
; v H
.' 0
‘l; © N_gNgN®noN
5 [l S TR
e o \Y H
. N_pNpNEN
Proof: Let N = (4 -BTBTNT)t pNy ,t 3 0. Then tN(t)  satisfies

d x N_gNpN* N, N
( 5= 80 = GBI L e 0,
.: 1
‘& so that from (4.5)
B
1 d Nypy 2 NN N*,N N* N,N

= = |I¥ (t)|| + ogN,8Y) = - BT ()BT MUL(t)D
~ 2 dt H H
'\.:
L
* and from (4.2)
k-
Yy 1 d 2 2 2 2

N N N

= 5 o IO), + opENo), € ¢+ 2818 o),
-
3 The integration of this inequality with respect to t yields
N
¢ Nyov 2 C N? ] Nora 2 2 N2

FIop + o [ o] « o o’ < o v mpep [ e s
) H 0 v o H
)
) Now the lemma follows from Theorem 2.1
(i
:| Q.E.D.
!
e
&
!
"G
e
N
|‘|

o Nl ---.-.-.-,'..‘.‘-. .
st \" R '“M.l'. l’v.l Meatl 5.' ;.0‘-,!.. ‘\' WS S '6‘0 t‘v, .|.l'¢ Y \'g‘ .t‘l‘q‘l g .(0\.0'“0:, lg,_ )
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It then follows from Lemma 4.1 and (4.8) that

]

* *
N (AN-BNBNTIN)t,  (aN-BNBN Ny

® N_pNgN*oN 2
<y I ||e(" -B7B” )t pNy ||2 dt ¢ Myjx|_ -
0 v H

Similary for e("‘N'BNBN‘,ﬁN)t ,t 30 Therefore we obtain, using (3.6) and
(3.7),

(4.9) o~ - N € My .

where 7y is given by (4.8).

Consider the (I-dimensional) parabolic control systzm [2];

0 _ 0 ( a)+()a )
az(t,x)-_aj‘(px)a—xz q{x &z+r(xz

+ X bi(x)ui(t) in (0.1)

i=1
with boundary condition z(t,0) = z(t,]) = 0, where p ¢ C'(0,1), being bounded
below by a positive constant W, ‘-;‘-x qQ, r € L°(O,l), and b; e L%0,), i = I,..m.
In this case, H = L%0)) and V = H}0,l), and the bilinear form o
given by
1

4,9 ) d ( d
[p(x) au —v - (g(x d_xu + r(x)u)vidx .

vy = I dx

0

B: R™ - L%0,]1) is defined by

m
(Bu)(x) = L bj(x)u; for u ¢ R™,

i=l
and dom(4) = dom(4*) = H?*O0,)) N H(‘,(O,l). Let us consider the following
finite dimensional subspace ZN of V:

N-1

ZN - (zeH:2(x) =L «BY(x), o ¢ R)

.....

PN

RS Y

| W %
, *‘,'.'_ Yo Wy W) lf"‘t 3'7%
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A
-
:r where B;"(~). i = ),.,N-1 are the linear B-spline elements on the interval [01);
‘.;’,
P ie.,
. ( N i+1 | [i 1+l]
-N(x-——) , X € [— , —
N N ' N
"N N - [i-l i ]
P BN = ¢ N(x- ——) , X € |——, —
e ¢ ) N ' N
!..‘
- { 0 . elsewhere
Uy
“
we
::: Then the approximation condition (4.6) is satisfied [8). Suppose (A4.B) is
)
stabilizable and (4.C) is detectable. Then (1.5) has the unique solution n
5
)
“f and using a similar arguments to those given above to show the regularity of
:: solutions to Liapanov equation (4.7), one can show that for x € H, DNx e
dom(A*). Since A* is closed in H and dom(4®*) C V, by the closed graph
o
o theorem, there exists a positive constant k,, such that Nz} 2 € kl||z|| 9 -
See H*(0,)) L4(o)
;: Hence the fundamental error estimate (c.g., {8]) gives
i Y
{ . 1y2
RS [Nz - m7z|| 5 € ko (5] 12l
= AN 1
o
= e - e <K ()1l
I for some positive constants k,k, Now it follows from (4.8) and (4.9) that
5 \ !
- ||nN-nN|| < k[ﬁ] for some constant k.
l. "
S 42 Hereditary Differential Systems
oY
‘N Consider the hereditary differential system in RY;
= i(t) = Ax(t) + A x(t-r) + r A(8)x(t+8)d8 + Bu(t)
o -r
Ay (4.10) x(0) » n and x(8) = ¢(B), -r € 8 < 0
-
54
. y(t) = C x(t)
-3
v
3
S
‘.\
»
@
.;::
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and the optimal control problem; for given initial data z = (n¢) ¢ R* x

L2%-r,0; R") , minimize the cost functional

2
(4.11) J(u,2) = I (|y(t)|2+ |u(t)| )dt .
0

Here, x € R, u ¢ R®™ and y ¢ k' and the element of A(-) is square
integrable. It is shown [l] that (4.10) and (4.11) are equivalently formulated as
the problem (1) ~ (1.4) on the product space Z = R® x L2(-r,0;R%); ie., z(1) =
(x(t),x(t+-)) € Z is the miid solution of (l.]) with

dom(A) = {(n,®) ¢ Z : ¢ ¢ HY(-r,0) and &0) = n} ,

for (¢{0),¢) ¢ dom(A4)
ABOLO) = (A H0) + A (1) + r A®)KO)AE, ¢) .
-r
The input operator B : R® - Z and the output operator C : Z - RF are
given by
Bu = (Bu,0) ¢ Z and C(n¢) = Cn .
Let us consider the averaging approximation [1] of (4.10); let
N
=f{z€Z:z=(ap,LaXx ; ;, ) a e¢R" 0¢k ¢N)ycZ,
k=l (F—r-— 1)
N N
and 4N  has the matrix representation (Q¥)'HN on RW*D)  when zZV s
identified with RYN*) by jts coordinate vector col(a],..aT), where the block

diagonal matrix QN and the block Hessenberg matrix HN are given by

1 AY AY .. AN

vl . - »

. P - c e e " A B »
".nﬁ .' Va, x 'I .. }~¢ J. L ‘3 ,\:A e h .{\N X ' (J!'n‘... !' .y !‘.‘!‘;' ’.\. “;‘"l‘ ]..'. 'k“‘"

» ¥R n »
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i-1 N-1
: : N N "N N e
[ with Ag= A , Al'= I N A (8)dé and Ay = A + J N A(6)d6. Note that
) . -Lr -r
<‘ . N .
PNB =B and CP¥ =C. Set BN =B and CN = C. Then (4™* has the
N
‘ T
. matrix representation (QN)'ll-lN on Ro(N+1) (HI)(i) is proved in [I] and
; (H1)(ii) is proved in [3]. Using the arguments in [5], [7] one can show that
'
¢ (H3) is satisfied (i.e., (i) is straightforward but (ii) is not so). Thus, the
; formu:a (3.8)-(3.9) yields
" X .
“nN - nN“ € 2)(4* - AN PN)n”
) By the regularity result in [4],if A(-) ¢ H-r,0;:R™), then
; A*1 + C*C ¢ dom(A4%)
3 where dom(A4*) = ((y,¥) € Z : ¢ ¢ H! and ¥-r) = A'lry} and A*(y.W) =
(W0) + Ay, - ®8) + 4T(.)y) € Z [3]. Since C*C(m¢) = (CTCn,0) ¢ Z for
(n,¢) € Z, this implies that if Nz = (y,), then ¢ ¢ H! so that ¢ ¢ H? and
: since A* is closed, "d)“ 2& M”z”z for some constant M. It then follows
H
from the arguments and error estimate in [1], [3] that
* M
; [CA*- AR PR € =y | + (9]0
{ YN
X R I
Hence we obtain ||n” - n”|| = 0( =) .
4 YN
[}
¥
L)
1)
1)
T A O T T B O B A 0 A g SO
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